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Abstract

The Interpolated Differential Operator (IDO) scheme on collocated grids provides fourth-order discretizations for all the
terms of the fluid flow equations. However, computations of fluid flows on collocated grids are not guaranteed to produce
accurate solutions because of the poor coupling between velocity vector and scalar variables. A stable coupling method for
the IDO scheme on collocated grids is proposed, where a new representation of first-order derivatives is adopted. It is impor-
tant in deriving the representation to refer to the variables at neighboring grid points, keeping fourth-order truncation error.
It is clear that accuracy and stability are drastically improved for shallow water equations in comparison with the conven-
tional IDO scheme. The effects of the stable coupling are confirmed in incompressible flow calculations for DNS of turbu-
lence and a driven cavity problem. The introduction of a rational function into the proposed method makes it possible to
calculate shock waves with the initial conditions of extreme density and pressure jumps.
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1. Introduction

Many physical processes are modeled by partial differential equations (PDEs) with more than one depen-
dent variable. The Navier–Stokes equation, which describes fluid motion, consists of velocity vector and scalar
variables of pressure and density. Numerical coupling between the vector and scalar variables is the key issue
to successfully obtain highly accurate solutions. In finite element computations of fluid flows, the coupling is
handled by using the pressure-stabilizing/Petrov–Galerkin (PSPG) formulation [1,2]. For finite difference
schemes, staggered grids provide good coupling and have been adopted in many numerical methods such
as the Marker-and-Cell (MAC) method [3] and the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) [4].
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We have developed the Interpolated Differential Operator (IDO) scheme [5–8], which solves not only
physical variables but also first-order spatial derivatives as additional dependent variables. The scheme uses
the Hermite interpolation function that is thought to be an approximated solution of the given PDE. The
major difference from the Compact Difference (CD) scheme [9] is the calculation for first-order derivatives.
While in the CD scheme derivatives at each grid point are implicitly given by the relation matrix to neigh-
boring grid points, first-order derivatives of the IDO scheme are given as the solutions of additional equa-
tions which are derived from governing equations. The first-order derivatives of the IDO scheme make the
resolved wavenumber wider than the Finite Difference (FD) and CD schemes. Staggered grids have been
used in the fluid flow analysis of the IDO scheme for numerical coupling, but staggered grids reduce spatial
accuracy to second-order. In contrast, the IDO scheme on collocated grids retains fourth-order accuracy in
space. Collocated grids offer conspicuous advantages for formulation, programming, parallel computing,
treatment of boundary conditions and unstructured grids, and for the application to advanced methods
such as the Adaptive Mesh Refinement (AMR) method [10,11] and the Cut-Cell method [12,13]. How-
ever, calculations on collocated grids can sometimes become unstable, because the first-order derivatives
in the governing equations are given as dependent variables and therefore do not refer to neighboring grid
points directly. In particular, collocated grids could not be applied to shock problems with initial jump
conditions.

In this paper, we propose a stable coupling method for the IDO scheme on collocated grids (IDO-SC
scheme), where a new representation of the first-order derivative is adopted. The IDO-SC scheme improves
accuracy and stability for the shallow water equations in a hydrostatic meteorological model and for incom-
pressible flow simulations. A rational function is introduced into the IDO-SC scheme to calculate extremely
strong shock waves.

2. Formulation of the IDO-SC scheme

2.1. Review of the IDO scheme

We consider the following two equations couple to each other:
of
ot
¼ ou

ox
; ð2:1Þ

ou
ot
¼ of

ox
; ð2:2Þ
which are equivalent to one-dimensional wave equations with unit phase speed. The additional equations
derived by taking the differentiation of the above equations are solved for the time evolution of the first-order
spatial derivatives:
ofx

ot
¼ o2u

ox2
; ð2:3Þ

oux

ot
¼ o2f

ox2
. ð2:4Þ
The subscript x in Eqs. (2.3) and (2.4) represents the spatial derivative in the x-direction where fx ” of/ox and
ux ” ou/ox. To solve Eqs. (2.1)–(2.4), we need to discretize the first- and second-order derivatives. We briefly
review the discretizations of the conventional IDO scheme on staggered grids and collocated grids.

The physical variable f and the first-order derivative fx are defined at a grid point j as fj and fx,j in the com-
putational domain of x0 < x < xN with an uniform grid spacing h = xj+1 � xj. On staggered grids, the physical
variable u and the first-order derivative ux are defined at a cell-centered point as uj+1/2 and ux,j+1/2.

A cubic interpolation function is used to obtain derivatives at the cell-centered point:
F ðX Þ ¼ A3X 3 þ A2X 2 þ A1X þ A0; ð2:5Þ
where X = x � xj+1/2. The coefficients of Eq. (2.5) are determined with the constraints of F(h/2) = fj+1, F(�h/
2) = fj, Fx(h/2) = fx,j+1, and Fx(�h/2) = fx,j as
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A3 ¼ �
2

h3
ðfjþ1 � fjÞ þ

1

h2
ðfx;jþ1 þ fx;jÞ; ð2:6Þ

A2 ¼
1

h
ðfx;jþ1 � fx;jÞ; ð2:7Þ

A1 ¼
3

2h
ðfjþ1 � fjÞ �

1

4
ðfx;jþ1 þ fx;jÞ; ð2:8Þ

A0 ¼
1

2
ðfjþ1 þ fjÞ �

h
8
ðfx;jþ1 � fx;jÞ. ð2:9Þ
First- and second-order derivatives at x = xj+1/2 are derived from the interpolation function as
fx(xj) = Fx(0) = A1, and fxx (xj) = Fxx(0) = 2A2. Eqs. (2.1)–(2.4) are discretized by�
of
ot

���
j

¼ 3

2h
ðujþ1=2 � uj�1=2Þ �

1

4
ðux;jþ1=2 þ ux;j�1=2Þ; ð2:10Þ

ou
ot

����
jþ1=2

¼ 3

2h
ðfjþ1 � fjÞ �

1

4
ðfx;jþ1 þ fx;jÞ; ð2:11Þ

ofx

ot

����
j

¼ 1

h
ðux;jþ1=2 � ux;j�1=2Þ; ð2:12Þ

oux

ot

����
jþ1=2

¼ 1

h
ðfx;jþ1 � fx;jÞ. ð2:13Þ
Unfortunately, Eqs. (2.12) and (2.13) reduce to second-order central finite differences and the overall accuracy
of the calculation becomes only second-order.

With collocated grids, all the variables f, fx, u, and ux are defined at a same grid point as fj, fx,j, uj, and ux,j.
We can construct a fifth-order interpolation function over the minimum domain xj�1 < x < xj+1:
F ðX Þ ¼ B5X 5 þ B4X 4 þ B3X 3 þ B2X 2 þ B1X þ B0; ð2:14Þ

where X = x � xj. The unknown coefficients of Eq. (2.14) are calculated with the constraints F(0) = fj,
Fx(0) = fx,j, F(±h) = fj±1, and Fx(±h) = fx,j±1:
B5 ¼ �
3

4h5
ðfjþ1 � fj�1Þ þ

1

4h4
ðfx;jþ1 þ 4f x;j þ fx;j�1Þ; ð2:15Þ

B4 ¼ �
1

2h4
ðfjþ1 � 2f j þ fj�1Þ þ

1

4h3
ðfx;jþ1 � fx;j�1Þ; ð2:16Þ

B3 ¼
5

4h3
ðfjþ1 � fj�1Þ �

1

4h2
ðfx;jþ1 þ 8f x;j þ fx;j�1Þ; ð2:17Þ

B2 ¼
1

h2
ðfjþ1 � 2f j þ fj�1Þ �

1

4h
ðfx;jþ1 � fx;j�1Þ; ð2:18Þ

B1 ¼ fx;j; ð2:19Þ
B0 ¼ fj. ð2:20Þ
By using the first-order derivative fx(xj) = Fx(0) = B1 and the second-order derivative fxx(xj) = Fxx(0) = 2B2,
Eqs. (2.1)–(2.4) are expressed as follows:
of
ot

����
j

¼ ux;j; ð2:21Þ

ou
ot

����
j

¼ fx;j; ð2:22Þ

ofx

ot

����
j

¼ 2

h2
ðujþ1 � 2uj þ uj�1Þ �

1

2h
ðux;jþ1 � ux;j�1Þ; ð2:23Þ

oux

ot

����
j

¼ 2

h2
ðfjþ1 � 2f j þ fj�1Þ �

1

2h
ðfx;jþ1 � fx;j�1Þ. ð2:24Þ
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Poor coupling between f and u comes from Eqs. (2.21) and (2.22), where the right-hand sides of these equa-
tions do not include the variables at neighboring grid points j + 1 and j � 1.
2.2. New representation of the first-order derivative

The Taylor series expansion of the physical variable f(x) at a position x = xj is considered:
f ðxj þ dxÞ ¼ f ðxjÞ þ
of
ox

����
x¼xj

dxþ 1

2

o
2f

ox2

����
x¼xj

dx2 þ 1

6

o
3f

ox3

����
x¼xj

dx3 þ � � � ð2:25Þ
Substituting f(xj) = fj into the equation, we have
f ðxj þ dxÞ ¼ fj þ
of
ox

����
x¼xj

dxþ 1

2

o
2f

ox2

����
x¼xj

dx2 þ 1

6

o
3f

ox3

����
x¼xj

dx3 þ � � � ð2:26Þ
For the first-order derivative fx(x), the Taylor series at the position x = xj is expressed as
fxðxj þ dxÞ ¼ fxðxjÞ þ
o2f
ox2

����
x¼xj

dxþ 1

2

o3f
ox3

����
x¼xj

dx2 þ 1

6

o4f
ox4

����
x¼xj

dx3 þ � � � ð2:27Þ
Using fx(xj) = fx,j, the expression is rewritten by
fxðxj þ dxÞ ¼ fx;j þ
o2f
ox2

����
x¼xj

dxþ 1

2

o3f
ox3

����
x¼xj

dx2 þ 1

6

o4f
ox4

����
x¼xj

dx3 þ � � � ð2:28Þ
The discretized formula of the first-order derivative at the position x = xj is obtained from Eqs. (2.26) and
(2.28) with the constraints of f(xj � hm) = fj�1, f(xj + hp) = fj+1, fx(xj � hm) = fx,j�1 and fx(xj + hp) = fx,j+1,
where hp = xj+1 � xj and hm = xj � xj�1. In the case of uniform grid spacing hp = hm = h, Eq. (2.26) leads
to the second-order finite difference,
of
ox

����
x¼xj

¼ 1

2h
ðfjþ1 � fj�1Þ �

1

6

o3f
ox3

����
x¼xj

h2 � 1

120

o5f
ox5

����
x¼xj

h4 þ � � � ð2:29Þ
The third-order derivative approximation is given by Eq. (2.28):
o3f
ox3

����
x¼xj

¼ 1

h2
ðfx;jþ1 � 2f x;j þ fx;j�1Þ �

1

12

o5f
ox5

����
x¼xj

h2 þ � � � ð2:30Þ
Substituting Eq. (2.30) into Eq. (2.29), the following discretized formula of the first-order derivative is
obtained:
of
ox

����
x¼xj

¼ 1

2h
ðfjþ1 � fj�1Þ �

1

6
ðfx;jþ1 � 2f x;j þ fx;j�1Þ þ

1

180

o
5f

ox5

����
x¼xj

h4 þ � � � ð2:31Þ
This representation of the first-order derivative refers to both the physical variables and the first-order deriv-
atives at neighboring grid points, and has fourth-order truncation error. In the IDO-SC scheme, coupling
terms such as pressure gradient and divergence of velocity are discretized by using Eq. (2.31).
2.3. Relation to the interpolation function

Without the constraint Fx(xj) = fx,j, a fourth-order polynomial,
F ðxÞ ¼ C4X 4 þ C3X 3 þ C2X 2 þ C1X þ C0; ð2:32Þ
can be constructed. The coefficients of Eq. (2.32) are determined by the five constraints F(0) = fj, F(±h) = fj±1,
and Fx(±h) = fx,j±1:
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C4 ¼ �
1

2h4
ðfjþ1 � 2f j þ fj�1Þ þ

1

4h3
ðfx;jþ1 � fx;j�1Þ; ð2:33Þ

C3 ¼ �
1

4h3
ðfjþ1 � fj�1Þ þ

1

4h2
ðfx;jþ1 þ fx;j�1Þ; ð2:34Þ

C2 ¼
1

h2
ðfjþ1 � 2f j þ fj�1Þ �

1

4h
ðfx;jþ1 � fx;j�1Þ; ð2:35Þ

C1 ¼
3

4h
ðfjþ1 � fj�1Þ �

1

4
ðfx;jþ1 þ fx;j�1Þ, ð2:36Þ

C0 ¼ fj. ð2:37Þ
First- and second-order derivatives at x = xj are given as fx(xj) = Fx(0) = C1 and fxx(xj) = Fxx(0) = 2C2,
respectively. Using the weighted average of these derivatives and the corresponding derivatives of the fifth-or-
der interpolation function (2.14), we have
fxðxjÞ ¼ ð1� aÞB1 þ aC1; ð2:38Þ
and
fxxðxjÞ ¼ 2fð1� bÞB2 þ bC2g. ð2:39Þ
Because B2 = C2, the weighted average with b is meaningless for the second-order derivative. When we use the
weighted factor a = 2/3, this first-order derivative is coincident with the SC representation (2.31). We can
interpret the above as follows: the spatial profiles of the dependent variables are expressed by the combination
of the fifth-order interpolation function (2.14) and the fourth-order interpolation function (2.32).

2.4. The IDO-SC scheme in multi-dimensional case

For two-dimensional wave equations written by
of
ot
¼ ou

ox
þ om

oy
; ð2:40Þ

ou
ot
¼ of

ox
; ð2:41Þ

om
ot
¼ of

oy
; ð2:42Þ
we solve fx, fy, fxy, ux, uy, uxy, mx, my, and mxy as dependent variables using the following equations:
ofx

ot
¼ o

2u
ox2
þ o

2m
oxoy

; ð2:43Þ

ofy

ot
¼ o

2u
oxoy

þ o
2m

oy2
; ð2:44Þ

ofxy

ot
¼ o

3u
ox2oy

þ o
3m

oxoy2
; ð2:45Þ

oux

ot
¼ o2f

ox2
; ð2:46Þ

ouy

ot
¼ o

2f
oxoy

; ð2:47Þ

ouxy

ot
¼ o

3f
ox2oy

; ð2:48Þ

omx

ot
¼ o

2f
oxoy

; ð2:49Þ
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omy

ot
¼ o2f

oy2
; ð2:50Þ

omxy

ot
¼ o3f

oxoy2
. ð2:51Þ
The representation of the first-order derivative (2.31) is applied to the derivative terms on the right-hand sides
of Eqs. (2.40)–(2.42). The second-order cross derivatives of mxy and fxy in Eqs. (2.43) and (2.49) are considered
to be the first-order derivative of my and fy in the x-direction. For uniform grid spacing xj+1 � xj = h, the
following form is substituted into to the cross derivative terms:
o2f
oxoy

����
x¼xi ;y¼yj

¼ 1

2h
ðfy;iþ1;j � fy;i�1;jÞ �

1

6
ðfxy;iþ1;j � 2f xy;i;j þ fxy;i�1;jÞ. ð2:52Þ
The cross derivative terms in Eqs. (2.44) and (2.47) are considered to be the first-order derivative of ux and fx

in the y-direction, and are discretized by
o2f
oxoy

����
x¼xi ;y¼yj

¼ 1

2h
ðfx;i;jþ1 � fx;i;j�1Þ �

1

6
ðfxy;i;jþ1 � 2f xy;i;j þ fxy;i;j�1Þ; ð2:53Þ
in the case of uniform grid spacing yj+1 � yj = h. The other derivatives on the right-hand sides of the equations
are discretized by the fifth-order interpolation function used in the conventional IDO scheme.
3. Numerical accuracy of the IDO-SC scheme

3.1. Fourier analysis

Fourier analysis is carried out for the first-order derivative (2.31). The spatial profile of the dependent var-
iable f(x) is assumed to be periodic over the domain [0, L] with uniform grid spacing h = L/N. The dependent
variable may be decomposed into a Fourier series,
f ðxÞ ¼
X

k

f̂ ðkÞeiwx=h; ð3:1Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

, and w = 2pkh/L is a scaled wavenumber. In the IDO-SC scheme, the first-order derivative is
solved independently, and the spatial profile of the first-order derivative is described as
fxðxÞ ¼
X

k

f̂ xðkÞeiwx=h. ð3:2Þ
The physical variables and the first-order derivatives at grid points j and j ± 1 are given by
fj ¼ f ðxjÞ ¼
X

k

f̂ ðkÞeiwxj=h; ð3:3Þ

fx;j ¼ fxðxjÞ ¼
X

k

f̂ xðkÞeiwxj=h; ð3:4Þ

fj�1 ¼ f ðxj � hÞ ¼
X

k

f̂ ðkÞeiwxj=he�iw; ð3:5Þ

fx;j�1 ¼ fxðxj � hÞ ¼
X

k

f̂ xðkÞeiwxj=he�iw. ð3:6Þ
Substituting Eqs. (3.3)–(3.6) into Eq. (2.31), we have
f SC
x ðxjÞ ¼

X
k

i sin w
h

f̂ ðkÞeiwxj=h �
X

k

cos w� 1

3
f̂ xðkÞeiwxj=h. ð3:7Þ
Here, we assume the Fourier coefficient f̂ xðkÞ to be f̂ xðkÞ ¼ iðw=hÞf̂ ðkÞ. Eq. (3.7) reduces to
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f SC
x ðxjÞ ¼

X
k

i
3 sin wþ w� w cos w

3h

� �
f̂ ðkÞeiwxj=h. ð3:8Þ
Lele [9] introduced the modified wavenumber wm. The first-order derivative is described with the modified
wavenumber as
f SC
x ðxjÞ ¼

X
k

f̂
SC

x ðkÞeiwxj=h ¼
X

k

i
wm

h

� �
f̂ ðkÞeiwxj=h; ð3:9Þ
where the modified wavenumber for Eq. (3.8) is estimated by
wm ¼ sin wþ w
3
� w cos w

3
. ð3:10Þ
Plots of the modified wavenumber against the exact wavenumber are presented in Fig. 1 in comparison with
second-, fourth-, and sixth-order FD schemes, and a fourth-order CD scheme [9]. It is found that the modified
wavenumber for the IDO-SC scheme is the closest to the exact wavenumber among the other difference
schemes for a wide range of wavenumber.

3.2. Wave equation

We examine the numerical accuracy of the IDO-SC scheme for one-dimensional wave equations with posi-
tive constant c = 1.0 as the simplest coupling problem:
o2f
ot2
¼ c2 o2f

ox2
. ð3:11Þ
This equation is divided into Eqs. (2.1) and (2.2). For the periodic domain [0, 1] with uniform grid spacing
h = 1/N, the initial condition is set to be
f ð0; xÞ ¼ A sin �w
h

x
� �

þ B cos
w
h

x
� �

; ð3:12Þ

uð0; xÞ ¼ �A sin �w
h

x
� �

þ B cos
w
h

x
� �

; ð3:13Þ
where the coefficients A = 0.8, B = 0.2 are chosen. We estimate the averaged error at the time t = 1/k using the
following equation:
error ¼
X

N

fexact;j � fnumerical;j

�� ��h; ð3:14Þ
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Fig. 1. Modified wavenumber for first-order derivative approximations.
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where fexact,j and fnumerical,j denote the exact solution and the numerical solution, respectively. In Fig. 2, the
deviation errors of the N1 norm from the exact solution is shown for the IDO-SC scheme, the conventional
IDO scheme on staggered grids and collocated grids, and the fourth-order FD scheme. The error for the stag-
gered grid IDO scheme indicates a second-order slope against the wavenumber. The other schemes have
fourth-order accuracy. The amplitude of the error of the IDO-SC scheme is one-order of magnitude smaller
than that of the FD scheme, and one-order larger than that of the conventional IDO scheme on collocated
grids.

4. Shallow water problem

Shallow water equations are often solved for weather forecast in hydrostatic meteorological models or
ocean problems. It is important to calculate the gravity wave with high accuracy and stability. We introduce
the proposed method for coupling between the geopotential height field and wind velocity components. Shal-
low water equations over a rotating sphere, using Cartesian coordinates on a polar stereographic projection,
are described as
oU
ot
¼ �SU

oU
ox
� SV

oU
oy
� o/

ox
þ fV � 1

2

oS
ox
ðU 2 þ V 2Þ; ð4:1Þ

oV
ot
¼ �SU

oV
ox
� SV

oV
oy
� o/

oy
� fU � 1

2

oS
oy
ðU 2 þ V 2Þ; ð4:2Þ

o/
ot
¼ �SU

o/
ox
� SV

o/
oy
þ /S

oU
ox
þ oV

oy

� �
; ð4:3Þ
where U = u/m, and V = m/m are termed the wind images, u and m are the components of the wind vector in the
x-direction and the y-direction, respectively. The notation m is the map-scale factor, and S = m2, / is the geo-
potential height of the free surface, and f = 2X sin(lat) is the Coriolis parameter with the latitude coordinates
�lat�. For these equations, the SC discretization (2.31) is used for o//ox in Eq. (4.1), o//oy in Eq. (4.2), and oU/
ox and oV/oy in Eq. (4.3). We also time advance the derivatives Ux, Uy, Uxy, Vx, Vy, Vxy, /x, /y, and /xy by
solving the differentiated equations corresponding to Eqs. (4.1)–(4.3). We apply the third-order upwind inter-
polation function used in the Constrained Interpolation Profile (CIP) scheme [14–17] to the second-order
derivatives derived from the advection terms.

The model is run over a square domain 200,000 km on each side centered at the North Pole, using a
stereographic projection true at 60�N. We use the same initial condition as reference [18,19], which is based
on an operational 500 mb analysis for 12:00 GMT on 28 February 1984. Uniform collocated grids are used,
and the solid wall boundary conditions are given in the vicinity of the equator. In order to show boundary



Fig. 3. Schematic for wall boundary treatment.

Fig. 4. Maps of root mean square differences from the result of Temperton for the geopotential height shown by contours: (a) the IDO-SC
scheme; (b) the conventional IDO scheme. A circle outside the contours represents the equator.
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treatments, the vertical wall illustrated in Fig. 3 is considered, where the wall surface is located at a cell-cen-
tered point x = xs. Imaginary fluid variables at the grid point j + 1 are extrapolated as follows:
Ujþ1 ¼ �Uj; U x;jþ1 ¼ Ux;j; U y;jþ1 ¼ �U y;j; Uxy;jþ1 ¼ Uxy;j; ð4:4Þ
V jþ1 ¼ �V j; V x;jþ1 ¼ V x;j; V y;jþ1 ¼ �V y;j; V xy;jþ1 ¼ V xy;j; ð4:5Þ
/jþ1 ¼ /j; /x;jþ1 ¼ �/x;j; /y;jþ1 ¼ /y;j; /xy;jþ1 ¼ �/xy;j. ð4:6Þ
In the case of the horizontal wall, the same procedure is adopted.
We compare the geopotential height errors of the IDO-SC scheme with those of the conventional IDO

scheme after 2 days. The errors are measured by the root mean square differences from the high-resolution
results of Temperton [19] using 25 km resolution grids. Fig. 4(a) and (b) show the error maps of the IDO-
SC scheme and the IDO scheme with 200 km resolution grids. The errors are greatly reduced by using the
IDO-SC scheme. In spite of using eight times coarser grids, the same accurate results are obtained as in the
method by Temperton.

5. Incompressible flow problem

5.1. DNS of two-dimensional homogeneous isotropic turbulence

Direct Numerical Simulation (DNS) of homogeneous isotropic turbulence is a suitable problem for check-
ing the numerical accuracy of incompressible flow simulations. The results are compared with that of a spec-
tral method [20]. The governing equations are described as
ou

ot
¼ �ðu � rÞu�rp þ 1

Re
r2u; ð5:1Þ

r � u ¼ 0. ð5:2Þ
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The time integration is done by a four-stage explicit Runge–Kutta method:
unþ1 ¼ un þ
X4

p

bpkpDt; ð5:3Þ
where ðb1 b2 b3 b4 Þ ¼ ð 1=6 1=3 1=3 1=6 Þ. The time derivative kp is calculated by the Simplified-
MAC (SMAC) [21] type method:
kp ¼ k�p �rpp; ð5:4Þ

k�p ¼ �ðup � rÞup þ 1

Re
r2up; ð5:5Þ
where
up ¼ un þ
X4

q

apqkqDt; ð5:6Þ
and
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0
BBB@

1
CCCA ¼

0 0 0 0

1=2 0 0 0

0 1=2 0 0

0 0 1 0

0
BBB@

1
CCCA.
Eq. (5.3) must satisfy the divergence free condition (5.2), and the following Poisson equation is therefore
solved by a multigrid SOR method [8]:
r � k�p ¼ r2pp. ð5:7Þ
For the time integration of derivatives ux, uy, and uxy, we calculate kx,p, ky,p, and kxy,p with the differentiated
equations of Eqs. (5.4), (5.5) and (5.7). In these equations, stable coupling is applied to the coupling terms,
that is, the pressure gradient of Eq. (5.4), the divergence of the velocity in Eq. (5.7), and the corresponding
second-order cross derivatives of these coupling terms as shown in Section 2.4. The other terms such as advec-
tion and diffusion terms and the right-hand side of Poisson Eq. (5.7) are discretized by using the fifth-order
central interpolation function (2.14).

We use 512 · 512 collocated grids for the computational domain of 0 6 x 6 1 and 0 6 y 6 1. The same ini-
tial condition and the time interval Dt = 8.2928 · 10�5 are employed as the spectral method. The initial energy
spectrum is shown in Fig. 5. The Reynolds number is 10930.8 (Rek0

¼ 396:251), where the notation k0 repre-
sents the Taylor micro-scale in the initial condition.
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Fig. 6 describes the comparison of the energy spectrum between the IDO-SC scheme and the spectral method
at an eddy turnover time ETT = 1.5. The energy spectrum obtained by the IDO-SC scheme shows quite good
agreement with that of the spectral method for all the wavenumbers. Fig. 7(a)–(c) show the turbulence statistical
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Fig. 6. Energy spectrum comparison between the IDO-SC scheme and the spectral method for ETT = 1.5: (a) all wavenumber region; (b)
high wavenumber region.

ETT

R
M

S

0.0 0.5 1.0 1.5

0.97

0.98

0.99

1.00
Spectral
IDO-SC

ETT

Sk
ew

ne
ss

0.0 0.5 1.0 1.5

-0.05

0.00

0.05
Spectral
IDO-SC

ETT

D
is

si
pa

tio
n

0.0 0.5 1.0 1.5
0.40

0.45

0.50

0.55

0.60

Spectral
IDO-SC

a b

c

Fig. 7. Time histories of turbulence statistics: (a) root mean square of the velocity; (b) skewness of the x-directional velocity; (c)
dissipation.



92 Y. Imai, T. Aoki / Journal of Computational Physics 215 (2006) 81–97
quantities of the root mean square of the velocity, the skewness of the horizontal velocity, and the dissipation,
respectively. These results of the IDO-SC scheme completely follow the solid lines representing those of the spec-
tral method. For the other statistical quantities, such as the flatness of the velocity, Kolmogorov scale, Taylor
micro-scale etc., the IDO-SC scheme agrees with the spectral method. These agreements clearly show that the
IDO-SC scheme retains a resolution comparable to that of spectral methods for incompressible flow
simulations.

5.2. Two-dimensional driven cavity flow

Two-dimensional driven cavity flow is often studied as a benchmark test in incompressible flow simulation
with use of Eqs. (5.1) and (5.2). To decrease CPU time in the cavity flow simulation, the following procedure is
applied. First, we solve the advection and diffusion terms of Eq. (5.1) by using a four-stage Runge–Kutta
method:
Fig. 8.
IDO-S
u� ¼ un þ
X4

p

bpkpDt; ð5:8Þ

kp ¼ �ðup � rÞup þ 1

Re
r2up. ð5:9Þ
The advection term of Eq. (5.9) is discretized with the third-order upwind interpolation function. Then, the
flow velocity at the next time step is corrected with the following equations:
unþ1 ¼ u� � rpDt; ð5:10Þ
r � unþ1 ¼ r � u� � r2pDt ¼ 0. ð5:11Þ
Fig. 8(a) shows the results of the conventional IDO scheme on 40 · 40 uniform collocated grids with
Reynolds number Re = 3200 for the horizontal velocity u along the vertical axis with x = 0.5, which is
the geometrical center in the horizontal direction, and the vertical velocity m along the horizontal axis with
y = 0.5. As a reference, the velocity profiles of Ghia et al. [22] are shown. The conventional IDO scheme
gives an inadequate result because of the poor coupling between velocity and pressure. The velocity profiles
of the IDO-SC scheme on 40 · 40 collocated grids are in good agreement with the reference profile as
shown in Fig. 8(b). We also plot the velocity profiles for Re = 5000 and Re = 10,000 in Fig. 9(a) and
(b), respectively. It should be noted that uniform 56 · 56 grids for Re = 5000 and 80 · 80 grids for
Re = 10,000 are used in these calculations. The IDO-SC scheme provides almost equal results with signif-
icantly smaller grid points in comparison with those of Ghia et al. on a 256 · 256 multigrid even for high
Reynolds numbers.
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Velocity profiles of cavity flow for Reynolds number 3200 with 40 · 40 collocated grids: (a) the conventional IDO scheme; (b) the
C scheme.
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Fig. 9. Velocity profiles of cavity flows: (a) Reynolds number 5000 with 56 · 56 grids; (b) Reynolds number 10,000 with 80 · 80 grids.
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6. Compressible flow problem

6.1. Formulation of the IDO-SC scheme for physical variables

In compressible flow problems, density and pressure change rapidly, and the coupling between the density
(pressure) and the velocity becomes more important for stable calculations. The Euler equations for compress-
ible flows are written as follows:
oq
ot
¼ �u

oq
ox
� q

ou
ox
; ð6:1Þ

ou
ot
¼ �u

ou
ox
� 1

q
op
ox
; ð6:2Þ

oe
ot
¼ �u

oe
ox
� p

q
ou
ox
; ð6:3Þ
where the notation q denotes the density and e is the inertial energy. The same SC manner with the shallow
water case is introduced in the last term of each equation. Eq. (6.2) is used for the time integration of the veloc-
ity, where the density is included in the last term. We need to improve the coupling between the velocity and
the density. A discretized expression is thus derived for physical variables by using the third-order interpola-
tion function,
F ðX Þ ¼ D3X 3 þ D2X 2 þ D1X þ D0. ð6:4Þ

We determine the unknown coefficients by the four constraints of F(±h) = fj±1 and Fx(±h) = fx,j±1:
D3 ¼ �
1

4h3
ðfjþ1 � fj�1Þ þ

1

4h2
ðfx;jþ1 þ fx;j�1Þ; ð6:5Þ

D2 ¼
1

4h
ðfx;jþ1 � fx;j�1Þ; ð6:6Þ

D1 ¼
3

4h
ðfjþ1 � fj�1Þ �

1

4
ðfx;jþ1 þ fx;j�1Þ; ð6:7Þ

D0 ¼
1

2
ðfjþ1 þ fj�1Þ �

h
4
ðfx;jþ1 � fx;j�1Þ. ð6:8Þ
The physical variable and its first-order derivative at x = xj are given by f(xj) = F(0) = D0 and fx(xj) = Fx(0)
= D1. The weighted averages of these values and those of the fifth-order interpolation function (2.14) are
f ðxjÞ ¼ ð1� cÞB0 þ cD0 ð6:9Þ
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and
fxðxjÞ ¼ ð1� dÞB1 þ dD1. ð6:10Þ

Since D1 is the same as C1, the above expression (6.10) coincides with SC representation (2.31) with the
weighted parameter d = 2/3. By substituting c = 2/3, the following representation is derived:
f ðxjÞ ¼
1

3
ðfjþ1 þ fj þ fj�1Þ �

h
6
ðfx;jþ1 � fx;j�1Þ. ð6:11Þ
The density profile is considered to be the combination of the fifth-order interpolation function (2.14) and the
third-order interpolation function (6.4). The representation includes fourth-order truncation error:
f ðxjÞ ¼
1

3
ðfjþ1 þ fj þ fj�1Þ �

h
6
ðfx;jþ1 � fx;j�1Þ þ

1

36

o4f
ox4

h4. ð6:12Þ
6.2. The IDO-SCR scheme

The IDO-SC scheme is not a monotone scheme, so that overshooting and undershooting appear at the edge
of a discontinuity profile. Calculations of shock waves with the initial conditions of extreme density and pres-
sure ratio sometimes break down due to a negative density. Xiao et al. [23] proposed the CIP scheme using a
rational function (RCIP scheme) to prevent numerical oscillations for advection calculations. We adopt the
rational function for the IDO-SC scheme, and call the scheme the IDO-SCR scheme. The following rational
function is used:
F ðX 0Þ ¼ E3X 03 þ E2X 02 þ E1X 0 þ E0

1þ RX 0
; ð6:13Þ

R ¼ jðS � fx;j�1Þ=ðfx;jþ1 � SÞj � 1

2h
; ð6:14Þ

S ¼ fjþ1 � fj�1

2h
; ð6:15Þ
where X 0 = x � xj�1. The coefficients are determined by the same procedure as [23] for the constraints of
F(0) = fj�1, F(2h) = fj+1, Fx(0) = fx,j�1, and Fx(2h) = fx,j+1.
E3 ¼ �
1þ Rh

4h3
ðfjþ1 � fj�1Þ þ

1þ 2Rh

4h2
fx;jþ1 þ

1

4h2
fx;j�1; ð6:16Þ

E2 ¼
3þ 4Rh

4h2
ðfjþ1 � fj�1Þ �

1þ 2Rh
2h

fx;jþ1 �
1

h
fx;j�1; ð6:17Þ

E1 ¼ Rf j�1 þ fx;j�1; ð6:18Þ
E0 ¼ fj�1. ð6:19Þ
The physical variable and first-order derivative at the center x = xj of the interpolation domain are given as
f(xj) = F(h), and fx(xj) = Fx(h). When these variables are substituted into Eqs. (6.9) and (6.10) instead of D0

and D1, the discretized expressions of the IDO-SCR scheme are obtained:
f ðxjÞ ¼
3� G

6
fjþ1 þ

1

3
fj þ

1þ G
6

fj�1 �
ð2� GÞh

6
fx;jþ1 þ

Gh
6

fx;j�1; ð6:20Þ

fxðxjÞ ¼
2þ 2G� G2

6h
ðfjþ1 � fj�1Þ �

2G� G2

6
ðfx;jþ1 þ fx;j�1Þ þ

1

3
fx;j; ð6:21Þ

G ¼ 1

1þ Rh
. ð6:22Þ
6.3. Shock tube problem

In order to confirm the effectiveness of the IDO-SCR scheme for compressible fluid flows, we examine one-
dimensional shock tube problems. Since it is necessary to avoid undershooting of the density profile, we
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choose the fractional steps method [24]. The governing equations (6.1)–(6.3) are divided into an advection
phase and non-advection phase. First, the advection phase is time integrated by using the semi-Lagrangian
procedure,
q�j ¼ qðxj � ujDtÞ; ð6:23Þ
u�j ¼ uðxj � ujDtÞ; ð6:24Þ
e�j ¼ eðxj � ujDtÞ. ð6:25Þ
The RCIP scheme is used for q and e, and the CIP scheme is used for u because there is no need of monoto-
nicity for u. Next, the equations for the non-advection phase,
oq
ot
¼ �q�j u�SC

x;j ; ð6:26Þ

ou
ot
¼ � 1

q�SCR
j

ðp�SCR
x;j þ q�x;jÞ; ð6:27Þ

oe
ot
¼ �
ðp�j þ q�j Þ

q�j
u�SC

x;j ; ð6:28Þ
are time advanced using a four-stage Runge–Kutta method. We apply the SC discretization to the values indi-
cated by the superscript �SC�. The values with the notation �SCR� are replaced with the SCR discretization. In
these equations, the variable q is added to the pressure as artificial viscosity [25], because we solve the com-
pressible flow equations in a non-conservative form [26]. We also time integrate the equations for the first-
order derivatives as done in the previous sections.

Fig. 10 shows the numerical results of density and pressure profiles with the initial condition of qL = 1.0,
qR = 0.125, pL = 1.0, pR = 0.1, and uL = uR = 0.0. The uniform grid spacing is h = 1/200, the Courant num-
ber is 0.2, and the coefficient of artificial viscosity is 0.75. Collocated grids cannot be applied to this problem
with the conventional IDO scheme, because the calculation breaks down just after the start. The IDO-SCR
scheme solves the problem without numerical oscillations, and improves accuracy in comparison to the com-
putation with staggered grids. It is found that our scheme gives comparable or better accuracy than other
high-resolution schemes [27–29].

The results for very rare density and pressure on the right-hand side of the computational domain, that is,
the density and pressure profiles initially have qL = 1.0, qR = 1.0 · 10�3, pL = 1.0, pR = 1.0 · 10�4, and
uL = uR = 0.0, are illustrated in Fig. 11. The grid spacing is h = 1/2000, the Courant number is 0.2, and the
coefficient of artificial viscosity is 2.0. It is noticed that the results of the IDO-SCR scheme are in good agree-
ment with the exact solution for the situation of drastic density and pressure changes.
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Fig. 10. Numerical results for the shock tube problem: (a) density; (b) pressure.
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Fig. 11. Numerical results for strong shock: (a) density; (b) pressure.
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7. Conclusions

We have presented a stable coupling method of the IDO scheme on collocated grids. A representation of
first-order derivatives used in the IDO-SC scheme has fourth-order accuracy. Fourier analysis shows the IDO-
SC scheme can resolve a wider range of wavenumbers than FD and CD schemes. In the shallow water prob-
lem of a hydrostatic meteorological model, the IDO-SC scheme drastically improves accuracy and stability in
comparison with the conventional IDO scheme. DNS of two-dimensional homogeneous isotropic turbulence
shows that the proposed scheme has a resolution comparable to that of spectral methods. For two-dimen-
sional cavity flow problem, the results almost equal to those of Ghia et al. are achieved with significantly smal-
ler grid numbers. We introduced a rational function into the SC method for solving compressible flow
equations. The IDO-SCR scheme is applicable to calculations of strong shock waves with the initial condition
of extremely large density and pressure jumps. The rational function not only suppresses numerical oscilla-
tions but also preserves the stability for such severe calculations. It is concluded that the proposed stable cou-
pling method strongly contributes to improve the numerical stability and accuracy for fluid flow analysis of
the IDO scheme on collocated grids.
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